Home » Readers Write » Currently Reading:

Readers Write: Natural Language Processing: Putting Big Data to Work to Drive Efficiencies and Improve Patient Outcomes

August 26, 2013 Readers Write 1 Comment

Natural Language Processing: Putting Big Data to Work to Drive Efficiencies and Improve Patient Outcomes
By Dan Riskin, MD

8-26-2013 6-26-06 PM

Natural language processing (NLP) is increasingly discussed in healthcare, but often in reference to different technologies such as speech recognition, computer-assisted coding (CAC), and analytics. NLP is an enabling technology that allows computers to derive meaning from human, or natural language input.

For example, a physician’s note may state that a patient “has poorly controlled diabetes complicated by peripheral neuropathy.” When notes are analyzed through an NLP system, coded features are returned that can:

  • Suggest codes such as ICD-9 or ICD-10 that may feed a CAC billing application;
  • Classify a patient according to applicable quality measures such as poorly controlled diabetes mellitus, to support a reporting tool;
  • Populate a data warehouse;
  • Feed analytics applications to support descriptive or predictive modeling, such as the likelihood of a patient being readmitted to a hospital within 30 days of discharge.

Healthcare is data intensive from both clinical and business perspectives. While the industry’s transition to electronic data collection and storage in recent years has increased significantly, this has not actually forced physicians to code the majority of meaningful content. Eighty percent of meaningful clinical data remains within the unstructured text, as it does in most industries. This means that it remains in a format that cannot be easily searched or accessed electronically.

NLP can be leveraged to drive improvements in financial, clinical, and operational aspects of healthcare workflow:

For financial processes, automating data extraction for claims, financial auditing, and revenue cycle analytics can impact the top line. NLP can automatically extract underlying data, making claims more efficient and offering the potential for revenue analytics.

For clinical processes, automatically extracting key quality measures can support downstream systems for reporting and analytics. NLP can infer whether a patient meets a quality measure rather than requiring individuals to manually document each measure for each patient.

For operational processes, descriptive and predictive modeling can support more effective and efficient operations. NLP can extract hundreds of data elements per patient rather than the 2-4 codes listed in claims, producing better models and supporting business insight and diversion of resources to high risk patients.

So, NLP is a powerful enabling technology, but it is not an end user application. It is not speech recognition or revenue cycle management or analytics. It can, however, enable all of these.

There is a battle underway that is increasingly recognized in the healthcare space. Individual hospital divisions seek turnkey solutions and frequently purchase NLP-enabled products. But at a broader level, health systems as a whole do not want to pay repeatedly for similar technology. They seek best-of-breed infrastructure, wanting a combination of electronic health records, data warehouses, NLP, and analytics.

This battle will increasingly highlight best-of-breed data warehouses, data integration vendors, and natural language processing technologies as health systems search for a scalable, affordable, and flexible healthcare infrastructure to feed a suite of clinical, operational, and financial applications.

Dan Riskin, MD is CEO of Health Fidelity of Palo Alto, CA.

View/Print Text Only View/Print Text Only


HIStalk Featured Sponsors

     

Currently there is "1 comment" on this Article:

  1. As Dr. Riskin points out, physician’s notes contain a wealth of information, and NLP, which is one facet of Big Data, is the key to accessing and mining the value of unstructured text. Big Data has three main features differentiating it from normal data: Volume, Velocity, and Variety. Unstructured text is in the Variety category, and NLP lets analysts apply structure to and extract actionable information from unstructured text.

    For example, consider a patient’s smoking status. An EHR may have a checkbox to indicate smoking status, but can it tell you whether the patient wants to quit, how many times they’ve tried to quit, and what cessation methods they’ve used? When did the patient begin smoking? Do they smoke, or are they using chewable tobacco? Or perhaps your patient is to young to smoke, but tobacco use is still a factor, as with premature babies admitted to the NICU with underdeveloped lungs. When they go home, are they entering a smoking household? If so, that is a major factor, and not one that an EHR is likely to capture. That kind of second order effect is impossible to capture and analyze in a traditional EHR without the use of NLP.

    Much of what we read about Big Data in industry publications and blogs is vendor-driven and filled with hype, but the hype is fading, and what remains are useful applications of the technology. NLP is already powering healthcare analytics, such as Population Health Management, enabling better outcomes at the individual and population level.

    Thomas C. Mueller, MBA, CDMP, CHPA
    Forward Health Group
    @ForwardHealthGp







Subscribe to Updates

Search


Loading

Text Ads


Report News and Rumors

No title

Anonymous online form
E-mail
Rumor line: 801.HIT.NEWS

Tweets

Archives

Founding Sponsors


 

Platinum Sponsors


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gold Sponsors


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reader Comments

  • BeenThereTookThat: Epic's Test is mostly a logic test. I took it and although it felt like ACT / SAT time, it was good to make me and other...
  • vdub: Amen to the response to Smuggler. Same goes for motorcycle riders that choose to not wear a helmet. I could care less i...
  • Denise Kennedy: Great article....
  • Wearyof it: Blah blah blah. Me me me. I am awesome. I can win even when I don't try....
  • Pedal Faster: Great post. But organizations are still run on emotion - they should actually use the data!...

Sponsor Quick Links